Effects of Obesity on Perivascular Adipose Tissue Vasorelaxant Function: Nitric Oxide, Inflammation and Elevated Systemic Blood Pressure
نویسندگان
چکیده
INTRODUCTION Perivascular adipose tissue (PVAT) surrounds most vessels in the human body. Healthy PVAT has a vasorelaxant effect which is not observed in obesity. We assessed the contribution of nitric oxide (NO), inflammation and endothelium to obesity-induced PVAT damage. METHODS Rats were fed a high-fat diet or normal chow. PVAT function was assessed using wire myography. Skeletonised and PVAT-intact mesenteric vessels were prepared with and without endothelium. Vessels were incubated with L-NNA or superoxide dismutase (SOD) and catalase. Gluteal fat biopsies were performed on 10 obese and 10 control individuals, and adipose tissue was assessed using proteomic analysis. RESULTS In the animals, there were significant correlations between weight and blood pressure (BP; r = 0.5, p = 0.02), weight and PVAT function (r = 0.51, p = 0.02), and PVAT function and BP (r = 0.53, p = 0.01). PVAT-intact vessel segments from healthy animals constricted significantly less than segments from obese animals (p < 0.05). In a healthy state, there was preservation of the PVAT vasorelaxant function after endothelium removal (p < 0.05). In endothelium-denuded vessels, L-NNA attenuated the PVAT vasorelaxant function in control vessels (p < 0.0001). In obesity, incubation with SOD and catalase attenuated PVAT-intact vessel contractility in the presence and absence of endothelium (p < 0.001). In obese humans, SOD [Cu-Zn] (SOD1; fold change -2.4), peroxiredoxin-1 (fold change -2.15) and adiponectin (fold change -2.1) were present in lower abundances than in healthy controls. CONCLUSIONS Incubation with SOD and catalase restores PVAT vasorelaxant function in animal obesity. In the rodent model, obesity-induced PVAT damage is independent of endothelium and is in part due to reduced NO bioavailability within PVAT. Loss of PVAT function correlates with rising BP in our animal obesity model. In keeping with our hypothesis of inflammation-induced damage to PVAT function in obesity, there are lower levels of SOD1, peroxiredoxin-1 and adiponectin in obese human PVAT.
منابع مشابه
Perivascular adipose tissue as a messenger of the brain-vessel axis: role in vascular inflammation and dysfunction.
Perivascular adipose tissue AT is a critical regulator of vascular function, which until recently has been greatly overlooked. Virtually all arteries are surrounded by a significant amount of perivascular adipose tissue, which has long been considered to serve primarily a supportive, mechanical purpose. Recent studies show that both visceral and perivascular fat is a very active endocrine and p...
متن کاملLocal inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients.
BACKGROUND Inflammation in adipose tissue has been implicated in vascular dysfunction, but the local mechanisms by which this occurs are unknown. METHODS AND RESULTS Small arteries with and without perivascular adipose tissue were taken from subcutaneous gluteal fat biopsy samples and studied with wire myography and immunohistochemistry. We established that healthy adipose tissue around human...
متن کاملErythropoietin has a restorative effect on the contractility of arteries following experimental hypoxia.
INTRODUCTION The aim of this study was to investigate the effect of erythropoietin on vascular contractility using an in vitro model of hypoxia replicating the hypoxic environment of blood vessels and surrounding adipose tissue in obesity. METHODS AND RESULTS Pharmacological in vitro studies were carried out on small mesenteric arterial segments from male Wistar rats with and without perivasc...
متن کاملObesity-Related Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat.
OBJECTIVE Perivascular adipose tissue (PVAT) exerts an anticontractile effect in response to various vasoconstrictor agonists, and this is lost in obesity. A recent study reported that bariatric surgery reverses the damaging effects of obesity on PVAT function. However, PVAT function has not been characterized after weight loss induced by caloric restriction, which is often the first line treat...
متن کاملEndothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome.
The metabolic syndrome represents a constellation of cardiovascular risk factors that promote the development of cardiovascular disease. Oxidative stress is a mediator of endothelial dysfunction and vascular remodeling. We investigated vascular dysfunction in the metabolic syndrome and the oxidant mechanisms involved. New Zealand obese (NZO) mice with metabolic syndrome and New Zealand black co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 52 شماره
صفحات -
تاریخ انتشار 2015